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The ( i + i ) ~  O(2) model: a finite lattice analysis 

C R Allton and C J Hamert 
Department of Theoretical Physics, Research School of Physical Sciences, Australian 
National University, GPO Box 4, Canberra 2601, Australia 

Received 10 November 1987 

Abstract. Finite-size methods and the theory of conformal invariance are applied to the 
( I + I ) D  O(2) or X - Y  planar model, The critical point is found to be ~ ~ ~ 2 . 0 ,  the value 
U = 0.501 * 0.005 is obtained for the index governing the critical divergence of the correlation 
length and the conformal anomaly is confirmed to be c = 1. The Kosterlitz-Thouless 
features of a low-temperature phase with zero spontaneous magnetisation but algebraic 
decay of correlations, together with a standard high-temperature phase, are observed. The 
critical exponent 7 is determined as a function of coupling constant and compared with 
theoretical expectations. 

1. Introduction 

The O(2) or X -  Y planar model is of special interest in statistical mechanics because 
of its unusual behaviour at the phase transition. The model has a standard high- 
temperature phase with an exponential decay of correlations, but it is believed to have 
an essential singularity in its correlation length 6 at a finite temperature or coupling 
g,. In the low-temperature phase the correlations decay algebraically with separation, 
vanishing at infinite distances. Thus the model can be said to have a line of criticality 
for g d g,. 

A fundamental analytic study of the model has been performed by Kosterlitz and 
Thouless (1973). They hypothesised that the mechanism responsible for the transition 
was ‘topological’ in origin, being due to the unbinding of vortex-antivortex pairs. 
From a renormalisation analysis Kosterlitz (1974) obtained the following functional 
form for the correlation length: 

g c  =a2 

where (+ = 4. According to the standard connection between statistical mechanics and 
field theory the reciprocal of the correlation length 5 corresponds to the mass gap F 
of the equivalent quantum system. 

Since then many analytical and numerical methods have been applied to try and 
confirm this structure, and estimate the critical coupling g, and critical index 7. Leaving 
aside much work on the 2~ Euclidean model, these methods include high- and 
low-temperature series expansions (Hamer er al 1979, Hamber and Richardson 1981, 

t Present address: Department of Theoretical Physics, School of Physics, University of New South Wales, 
PO Box 1, Kensington 2033, Australia. 

0305-4470/88/102417 + 13$02.50 @ 1988 IOP Publishing Ltd 2417 



241 8 C R Allton and C J Hamer 

Luck 1982), finite lattice Hamiltonian approaches (Hamer and Barber 1981), Monte 
Carlo methods (see e.g. Fernindez et a1 1986, Heys and Stump 1984, Stump 1986) 
and some analytic work (Mattis 1984, Migdal 1975, Stump 1980). 

In this paper our aim is to use a Hamiltonian finite-size scaling approach to 
determine the critical point and the critical exponent 7 as a function of coupling. We 
also test the application of conformal invariance to the system. Polyakov et a1 first 
introduced the hypothesis of conformal invariance to 2~ statistical mechanics systems 
as criticality (Polyakov 1970, Belavin et al 1984a, b). Cardy has shown that these ideas 
of conformal invariance have special applicability to statistical systems of finite width 
and infinite length (strips). He argued that from the finite-size scaling amplitudes of 
the eigenvalues of the transfer matrix (or quantum Hamiltonian) one can determine 
(i)  the universality class of the system (denumerated by the conformal anomaly c)  and 
(ii) the system’s critical exponents?. We apply this approach in § 3.3. 

2. Method 

The system can be realised as a Hamiltonian field theory on a one-dimensional lattice 
with a continuous time dimension (see Hamer et a1 1979). In the angular momentum 
representation the M-site quantum Hamiltonian is 

fi = 
M 

( J2(  m) - sx{ J+( m )J-  ( m + 1 ) + J-( m )J+( m + 1 )} - i h  { J+ ( m ) + J- ( m )}) (2.1 a ) 

= & - ’  ZXV - ihW (2.lb) 
m = l  

where J ( m )  measures the spin at each site, J + ( m )  is the raising/lowering operator, 
x = 2/g2 (g is the temperature variable) and h is the magnetic coupling. 

The finite lattice method we use to extract the energy eigenstates of the Hamiltonian 
is based on the work of Hamer and Barber (1981). The M-site Hamiltonian is 
represented on strong coupling (x = 0) basis states and the eigensolutions are obtained 
using a N-step nested Lanczos procedure$. 

The zero magnetic field Hamiltonian commutes with the total spin operator S =  
Z m  J (  m ) ,  so the spectrum of eigenstates forms sectors labelled by the value of ( S ) .  
There are four eigenstates of interest to us: the ground and first excited states in the 
(S)=O sector (defined as 110)) and 112)) respectively) and the ground and first excited 
states in the ( S )  = 1 sector (defined as 111)) and 113)) respectively). These states have 
corresponding energies U, ( i  = 0 to 3). The mass gaps between states I /  i)) and / /  j)) are 
defined F,,=u,-w, ( i , j=Oto3)wi th  F,,,=F. 

2.1. Cutoff schemes 

In the strong-coupling (angular momentum) representation each lattice spin can take 
on any integer value, so even the finite lattice Hamiltonian is infinite dimensional. A 

t For the O(2) model, the connection between the mass gap scaling amplitude and the critical exponent 7 
was actually proved by Luck (1982), in a low-temperature analysis which preceded Cardy’s work. 
t This Lanczos scheme is a generalisation of that of Berger et al (1977) where instead of forming a 2 x 2 
matrix as an intermediate step an N x N matrix is formed. The most efficient value of N was found to be 
around 10. 
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further restriction on these configuration states is obviously required to make the 
finite-size model computationally tractable. Some possible truncation schemes have 
been discussed previously by Irving and Hamer (1983) and Patk6s and Rujin (1985). 

Three truncation schemes were investigated here. These imposed a limit on (i)  
order of formation, (ii) spin, and (iii) unperturbed energy of the strong-coupled basis 
states. The cutoff on the order of perturbation (scheme (i))  considers only those 
strong-couplng basis states formed up to the Nth  order (see Irving and Hamer 1983). 
In scheme (ii) we restrict the spin at each site to that l(J(m))/sJ,,,,, for all m, while 
in scheme (iii) the total unperturbed energy is restricted, (Z,J2( m ) )  s EL,,. 

The three cutoff schemes were applied to a six-site test lattice to find which was 
the most efficient: it turned out that the ‘energy cutoff’ method (scheme (iii)) gives the 
most accurate eigenvalues, around two orders of magnitude better than schemes (i)  
and (ii). For ferromagnetic spin models, one finds empirically that the amplitude of 
a strong-coupling basis state within the exact ground-state eigenvector tends to drop 
off exponentially with its unperturbed energy Eo;  so this energy cutoff scheme, originally 
proposed by Irving and Hamer, is similar in effect to the importance sampling scheme 
of Patk6s and Rujin, and is simpler to implement. Numerical details of the calculations 
are outlined in appendix 1, together with some notes on a more sophisticated scheme 
which attempted to take some account of basis states outside the cutoff, but was 
discarded because it was not cost-effective. 

3. Results 

3.1. Critical point 

The first point of interest in the model lies in the determination of the critical point. 
We use three methods to find x,: 

(i) using finite-size scaling to determine where the mass gap scales as 1 / M  (see 
Hamer and Barber 1981); 

(ii) fitting the numerically obtained Callan-Symanzik p function to the p function 
obtained from Kosterlitz’s suggested form of the mass gap (inverse of (1.1)) (see 
Roomany and Wyld 1980); and 

(iii) extrapolating the finite-size mass gaps directly to the bulk limit using the 
Romberg algorithm (this method follows that used by Beleznay (1986)). 

3.1.1. Critical point from jinite-size scaling of the mass gap. Following Hamer and 
Barber (1980) we define the mass gap ratio 

M F ( x ;  M )  
( M  - l )F (x ;  M - 1) R M ( X )  = 

where F ( x ;  M )  is the mass gap at coupling x and lattice size M ;  or introducing an 
‘M-shift’: 

( M  + & ) F ( X ;  M )  
( M - l + & ) F ( x ;  M - 1 ) .  

R , ( x ;  E )  = (3.2) 

The pseudo-critical points x& of the finite lattices are defined from RM(x&; E )  = 1. 
These form a sequence which extrapolate as M + 00 to the critical point x, of the bulk 
model for any fixed value of E. 
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The extrapolation is carried out on a number of different sequences of lattice sizes 
using the alternating M-shifted 'VBS algorithm' (Barber and Hamer 1982, Vanden 
Broeck and Schwartz 1979). The results for the sequences M = 1,2,  . . . ,7 and 1,2,  . . . , 9  
are plotted in figure 1 .  From this method we estimate xc = 1.9k0.1. Another extrapola- 
tion routine, that of Lubkin (1952), generally did not give such consistent results. 

1 
I M = 1 , 2 , , 9  

\ \ J 

M:1,2, ,7 
1.9 - 

1.8 4 
0 0.2 0.4 0.6 0.8 1.0 

E 

2 

Figure 1. Critical point x, against extrapolation parameter E .  These results are obtained 
using the alternating M-shifted VBS algorithm as described in § 3.1.1. The plots are from 
lattice sizes M = 1,2,. . . , 7  and M = 1 , 2 , .  . . , 9  as indicated. From this curve we estimate 
x,= 1.910.1. 

3.1.2. Using the Callan-Symanzik p function. The standard definition of the p function 
in terms of the mass gap is as follows (Hamer et a1 1979): 

Substituting Kosterlitz's proposed functional form of the mass gap (the inverse of 
( 1 . 1 ) )  into ( 3 . 2 )  we obtain the following form of the p function for the O ( 2 )  model: 

P k ) l g  - ( g  - gc)l+u. (3.4) 

The numerically obtained p function is fitted to this parametrised form. 

mass gaps has been defined by Roomany and Wyld (1980): 
A very useful finite-size Callan-Symanzik p function in terms of the finite-size 

A numerical estimate of the bulk p function is obtained from extrapolating the finite-size 
pM(x) (3.5) to the M=co  limit. Again there is a choice of lattice sizes to use in the 
extrapolation sequence and a choice of extrapolating algorithms to use. We find the 
most consistent estimate of p ( g )  is from the VBS algorithm using the lattice sizes M = 1 
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Figure 2. Log (base 10) of mass gaps from the Romberg extrapolation against coupling x 
plotted here for a variety of lattice sizes as shown. This approach is described in 5 3.1.3. 
The mass gaps extrapolate to negative values in the region indicated. ( In  this region the 
log of the absolute value of the mass gaps is shown.) 

to 8. We now fit this numerically obtained p ( g )  to Kosterlitz's parametrised form 
(3.4) using a three-parameter least-squares fit and we obtain 

X ,  = 2.06 * 0.04 

U = 0.501 * 0.005. 

( 3 . 6 ~ )  

(3 .6b)  

These compare favourably with values Kosterlitz obtained from his approximate 
solution of the model ( U  = 4) and agree with the results obtained by Roomany and 
Wyld using a similar fitting procedure. 

3.1.3. Direct mass gap extrapolation via Romberg. This method follows that of Beleznay 
(1986). It employs the Romberg algorithm to extrapolate a sequence of finite-size mass 
gaps to the bulk limit assuming an expansion of the finite-size mass gaps in powers 
of 1 / M .  Every possible combination of lattice sizes is used to form the sequence of 
mass gaps. (The Romberg algorithm can be applied to mass gaps from non-sequential 
lattice sizes.) Those sequences that converge give x, = 2.0. The logarithms of the bulk 
mass gaps for a few sequences of lattice sizes ( M  = 1 , 2 , .  . . , 5 ;  M = 1 , 2 , .  . . , 6  and 
M = 1 , 2 , .  . . , 7 )  are shown in figure 2 .  The Romberg algorithm also gives an upper 
bound for the error of the estimate. From this method using all the converging sequences 
of lattice sizes, we estimate x,  = 2.00* 0.03. This confirms the results of Beleznay. 

The three above estimates of x ,  are comparable and give ~ ~ ~ 2 . 0 .  The spread of 
results mirrors the subtlety of the transition. 

3.2. The critical index q 

For standard phase transitions the mass gap approaches zero as 

F - ( g  - g c ) "  (3 .7)  

in the vicinity of the critical point. However, since the mass gap for this model has 
an exponential form, v itself cannot be defined. Similarly the exponents of the 
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magnetisation A and susceptibility x ( p  and y respectively) do not have standard 
definitions. However if A and x are expressed in terms of the correlation length 6 
one can make sensible definitions of related exponents = ' p /  v' and f = ' y /  U' and 
continue to use finite-size scaling as usual, 

x M  - 6'- M' M + W  ( 3 . 8 ~ )  

AM-[5-fi-MM-d M + w  (3.8b) 

(see Kosterlitz 1974). The usual strong scaling laws give 

( 3 . 9 ~ )  

(3.9b) 

so that the transition is effectively described by a single magnetic index 77. The specific 
heat is not found to display any noticeable singularity. 

We obtain the susceptibility x from both 

( 3 . 1 0 ~ )  
l M M  

X M  =s ((ollv(k m)llo)) 
z = I  m = l  

where 

V (  i, m )  = J+( i)J-( m )  + J-(  i)J+( m )  (3.10b) 

(see Pesch and Kroemer 1985) and 

(3.11) 

(using the equivalence with statistical mechanics). We obtain the magnetisation A 
from: 

(see Hamer 1982). The exponent 77 can be determined from the x M  and AM ((3.10)- 
(3.12)) via the respective finite-size scaling relations x M  - M2-" and AM - M-"" 
(using (3.8) and (3.9)). The best method we found for extracting the exponent from 
these scaling relations of the form aM - M" is as follows: 

a =  lim ( M + E )  
M-OZ 

(3.13) 

The limiting process was facilitated with the VBS algorithm. Columns 2, 3 and 4 of 
table 1, and figure 3, show ~ ( x )  determined in this way from the quantities x M  and 
AM defined in (3.10)-(3.12). There is excellent agreement between the methods in 
the value of ~ ( x ) .  

3.3. Conformal invariance 

For the Hamiltonian version of the system the critical anomaly and some of the system's 
exponents can be found from conformal invariance but there is the added complication 
of an undetermined parameter 5 :  the normalisation factor of the Hamiltonian. This 
factor 5 arises because any scalar multiple of the Hamiltonian commutes with the 
transfer matrix and is thus a candidate Hamiltonian for the model. To proceed one 
must know one o f  c; C; or a relevant critical exponent. 
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0.3 

0.2 - 

0 .  

0.1 - 

’ 

Table 1. Estimates of v, estimates of the ‘energy operator dimension’ and estimates of i, 
the normalisation factor of the Hamiltonian. va, q b  and 7‘ are obtained via (3.8) and (3.9) 
with va and v b  defined from the susceptibility ,y as in (3.10) and (3.11) respectively, and 
q c  defined from the magnetisation Y defined in (3.12). qUc is from the weak-coupling 
expansion (A2.10). The A are determined from the method outlined in 5 3.3. The i are 
the normalisation factors of the Hamiltonian. La is determined numerically as described 
in 0 3.3 and [”‘ is from the weak-coupling expansion (A2.9). The error in the data is of 
the order of the last figure shown. 

X rla q b  vc  2AOl  2A23 7”’ A02 5” i”‘ 

/ 
/ 

/ 

/ / ’ \  ‘. . -- + -- / 

f / 
/ 

/ \  Weak coupling 

/ Strong coupling 

/ 

1.8 0.229 
1.9 0.216 
2.0 0.205 
2.1 0.197 
2.2 0.190 
2.3 0.183 
2.4 0.178 
2.5 0.173 
2.6 0.168 
2.7 0.164 
2.8 0.160 
2.9 0.157 
3.0 0.154 
3.1 0.151 
3.2 0.148 
3.3 0.145 
3.4 0.143 
3.5 0.141 
3.6 0.139 
3.7 0.137 
3.8 0.135 
3.9 0.133 
4.0 0.132 

0.179 
0.180 
0.201 
0.196 
0.190 
0.182 
0.177 
0.171 
0.167 
0.161 
0.157 
0.153 
0.152 
0.146 
0.144 
0.140 
1.138 
0.137 
0.133 
0.132 
0.130 
0.129 
0.127 

0.229 
0.215 
0.204 
0.196 
0.189 
0.182 
0.177 
0.172 
0.168 
0.164 
0.160 
0.157 
0.153 
0.150 
0.148 
0.145 
0.143 
0.140 
0.138 
0.136 
0.135 
0.133, 
0.132 

0.23 1 
0.216 
0.205 
0.197 
0.189 
0.183 
0.178 
0.173 
0.169 
0.164 
0.161 
0.157 
0.154 
0.150 
0.148 
0.145 
0.142 
0.140 
0.137 
0.135 
0.133 
0.131 
0.129 

0.18 
0.17 
0.16 
0.157 
0.153 
0.150 
0.146 
0.143 
0.140 
0.137 
0.135 
0.133 
0.131 

0.130 
0.128 
0.126 
0.124 
0.122 
0.120 
0.119 
0.117 
0.115 
0.114 
0.113 

1.85 
1.8 
2.0 
2.0 
1.98 
1.99 
2.00 
2.02 
2.04 
2.0 
2.2 
2.3 
2.3 
2.3 
2.2 
2.2 
2.1 
2.1 
2.08 
2.06 
2.05 
2.05 
2.04 

1.99 
1.99 
2.00 
2.01 
2.02 
2.02 
2.02 
2.02 
2.01 
2.01 
2.01 
2.01 
2.02 
2.10 
2.02 
2.01 
2.01 
2.01 
2.02 
2.02 
2.01 
2.01 
2.02 

1.52 
1.57 
1.62 
1.67 
1.72 
1.77 
1.82 
1.86 
1.91 
1.95 
2.00 
2.04 
2.08 2.45 
2.12 2.49 
2.16 2.53 
2.20 2.57 
2.24 2.61 
2.28 2.65 
2.32 2.68 
2.36 2.72 
2.40 2.76 
2.43 2.79 
2.47 2.83 
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One expects to find c = 1 for the O(2) model. This is because the O(2) model has 
a scale invariant line of criticality with continuously varying exponents which is only 
allowed for in models with c 3  1.  (The factor l can be found for those models where 
the dispersion relation can be determined since the conformally invariant Hamiltonian 
has the dispersion relation E - p .  However the dispersion relation has not been found 
for the O(2) model.) 

We have derived the critical exponents, assuming c = 1 ,  which we compare with 
those obtained in P 3.2 from finite-size scaling. The comparison is then a test of the 
c = 1 hypothesis. 

Specifically Cardy has shown 

(3.14) 

(3 .15 )  

where e ,  is the bulk ground-state energy per site, and A, is the anomalous dimension 
corresponding to the operator connecting states I/ i)) and Ilj)). 

Using data from pairs of lattice sizes, we can extract lM from (3.14). These 
lattice-dependent lM are extrapolated to the bulk limit 5. Using (3.15) the A , J ( M )  are 
determined and extrapolated to the M = CO value A,(co). The Au are then found from 
the ratio A , , ( c o ) / ~ .  

We expect 2AOl=2A2, = q since the states 110)) and 111)) (and the states 112)) and 113))) 
are connected via the magnetic operator. Also we expect Ao2 = AI3 = 2 as this is the 
dimension corresponding to the energy operator in the critical region (see Cardy 1987). 
The values of 2AO1, 2A23, AO2 and A,, for couplings x = 1.8 to 4.0 are listed in table 1 .  
From this table one can see that to within errors 2AOl = 2A23 = q as expected and for 
the interval x b 2 AO2 = A I 3  = 2 within errors. Figure 3 also plots 2AO1 and 2A23 against 

These results confirm the identification of the O(2) model as a c = 1 conformal 
X. 

system. 

3.4. Exponent q a s  a function of coupling 

Our results for the index q can be compared with some theoretical expectations: 

for the Euclidean version of the model 
(a) As T + 0 (or x + CO), the low-temperature series analysis of Luck (1982) predicts 

q(T) - T / ~ T .  (3.16) 

A weak-coupling analysis of the Hamiltonian version of the model outlined in appendix 
2 gives an entirely equivalent result 

7-0 

1 
(3.17) - -  

q ( x )  x-, T a r  

The weak-coupling prediction (3.17) is plotted in figure 3 .  The data appear quite 
consistent with this asymptotic behaviour. 

(b) As T - ,  TZ, the renormalisation group analysis of Kosterlitz (1974) predicted 

T ( T )  - ; - a ( ~ c - ~ ) ' / 2  (3.18) 
T-T, 
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or in terms of the coupling x 

r](x) - a-(Y’(X-xX,)”2. (3.19) 

The result ~ ( x J  = a  is thought to be exact (Nienhuis 1982). Our results do not agree 
with this prediction, remaining below 77 = t to within the estimated errors throughout 
the region x = 1.8-2.0 where the critical point may lie. This might be because r](xc) 
is not exactly t ;  but we believe the more likely explanation is the presence of logarithmic 
corrections to scaling at the critical point. Such logarithmic corrections are known to 
occur in the case of the X X Z  Heisenberg model (Alcaraz et a1 1987) which is a soluble 
model with a Kosterlitz-Thouless transition. They render the convergence of the finite 
lattice results very slow in the vicinity of the transition point, with a corresponding 
decrease in accuracy of the estimated exponent. 

X’XC 

3.5. High-temperature series data 

There are some ‘high-temperature’ series data available for the (1 + 1 ) ~  O(2) model. 
Series for the mass gap were given by Hamer er a1 (1979) and for the susceptibility 
by Hamer and Kogut (1979). The series for the mass gap was subsequently extended 
to tenth order by Hornby and Barber (1985), who used Pad6 techniques to estimate 
x, = 1.78 * 0.06 and U = 0.50 * 0.08. The susceptibility series has also been extended 
recently to eighth order (Guttmann et a1 1988) (see table 2). Pad6 analysis of this 
series assuming a Kosterlitz-Thouless singularity gives x, = 1.86 f 0.06. 

Table 2. Series coefficients for the ground-state energy per site ( w 0 / M ) ,  the susceptibility 
,y and the mass gap F. 

Order w , / M  X F 

0 
0 

-1 
0 
0.104 166 666 667 
0 
0.078 108 465 608 5 
0 
0.004 641 517 200 22 

4 
16 
41.6 
92.4 

185.307 784 857 
345.121 532 032 
613 033 377 144 

1045.885 044 24 
1727.235 404 87 

1 
-2 

0.5 
0.25 
0.230 208 333 3 
0.192 065 972 2 
0.014 473 579 4 
0.089 062 289 4 

-0.044 807 11 5 8 

Hamer and Kogut (1979) also outlined a way to estimate the critical exponent r] 
using these data. They formed the quantity 

(3.20) 

using (3.8) and (3.9), and estimated it using Pad6 approximantst. Using this relation- 
ship to define the quantity 77 in the high-temperature regime, some Pad6 approximants 

t Hamer and Kogut (1979) plotted a curve for the [3,3] approximant, from which they estimated 7 = 
0.26k0.03 at g,, in good agreement with the Kosterlitz prediction 7 = 4. Unfortunately, the length of their 
series was not sufficient to justify forming a [3,3] approximant; and our corrected results do not agree with 
the predictions nearly so well. 
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obtained from the extended series are shown in figure 3. Again, the results do not 
agree with the prediction ~ ( x , )  = a. This is not unexpected, since the Pad6 approximants 
will not be able to mimic a singular, cusp-like behaviour such as (3.19) in the vicinity 
of the transition point. 

4. Conclusions 

Hamiltonian finite-size scaling methods have been applied to the ( 1  + I ) D  O(2) model. 
Results have been extended from previous work by the study of different schemes for 
truncating the infinite Hilbert space of configurations into a soluble, finite parcel, by 
the application of the theory of conformal invariance to the system and by the 
determination of the critical exponent 7. A numerically efficient vector algorithm has 
been developed for the ‘core’ routine in the eigensolution package. This routine involves 
the multiplication of the sparse Hamiltonian matrix by ‘Lanczos’ vectors in the eigen- 
solution package (see appendix 1). 

The hypothesis that the O(2) model falls in conformal invariance class c = 1 has 
been nicely verified by the data. Normalising to this hypothesis, the finite-size scaling 
amplitudes give values for 7 in excellent agreement with other estimates and a scaling 
dimension A = 2 for the energy operator, within errors. 

The exact position of the Kosterlitz-Thouless transition is difficult to determine 
accurately due to the exponential decay of the mass gap as x + x,. From the finite 
lattice results, we obtained x, = 1.9 * 0.1 using the scaled mass gap ratios, x, = 2.06 * 0.04 
using the Roomany-Wyld /3 functions, and x, = 2.00* 0.03 using the Romberg mass 
gap extrapolations (in agreement with the value x, = 2.02 * 0.02 obtained by Beleznay 
(1986)). The high-temperature series analyses give a lower figure, around xc= 1.8. 
Thus the exact value of x, remains uncertain to within several per cent. (This is 
comparable with the situation in the Euclidean version of the model where Monte 
Carlo estimates have been found to agree on T, within 10% (Fernindez et a1 1986, 
Van Himbergen 1984).) All the evidence is in accord with the expected line of critical 
behaviour for x>x,. The value of a=0.501*0.005 has been found using the 
Roomany-Wyld p-function fitting procedure in excellent agreement with the Kosterlitz 
value of a = i. 

The index 77 has been estimated as a function of x by several differsnt methods, 
which are all in excellent agreement. The scaling relations f = 2 - 7 and p = 77/2 have 
been thereby confirmed for this model. In the low-temperature region, our results 
agree well with the expected asymptotic behaviour ~ ( x )  a x - ~ ’ ~ .  But near the transition 
point, they do not agree with the value ~ ( x , )  = predicted by Kosterlitz. We believe 
that this is due to logarithmic corrections to scaling, similar to those occurring in the 
X X Z  Heisenberg model. 
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Appendix 1. Numerical details 

The program used to set up the Hamiltonian matrix and solve for the energy eigen- 
solutions totals around 1000 lines of FORTRAN code. A Digital VAX computer is used 
for the 1-7 site calculations and the 8 and 9 site lattice data are from a Cyber 205 
supercomputer with a code optimised for vector efficiency. Table 3 illustrates the rapid 
growth in computing power and storage requirements that are involved as the lattice 
size increases. 

Table 3. Computer used, energy ‘cutoff applied, dimension of arrays, CPU time taken and 
accuracy of eigenvalues attained for lattice sizes 7, 8 and 9 for the ( S )  = 0 sector. 

Number of CPU time taken forming 
Dimension non-zero Accuracy 

Energy of matrix One eigen- of eigenvalue 
M Machine ‘cutoff Hamiltonian elements Matrix solution (at x = 2.0) 

7 VAX780 60 units 16026 106316 -2000s -700s one part in io9 
8 Cyber 205 40 units 23943 290000 -28 s -3 s one part in 10’ 
9 Cyber 205 30 units 34891 440000 -92s -6 s one part in 10’ 

The barrier to moving to still larger lattices on the Cyber 205 is memory limitations, 
not excessive CPU time. The total memory needed for a nine-site lattice with a basis 
state energy cutoff of 30 units exceeds the main memory of the machine. Page faulting 
becomes by far the dominant component of the nominal cost of the machine and thus 
limits the size of lattices that can be handled. 

The Hamiltonian matrix for the largest sizes studied has dimension 60 000 but is 
so sparse that it only contains around 700 000 non-zero matrix elements. The ‘core’ 
routine in the nested Lanczos algorithm involves the multiplication of this sparse matrix 
by the ‘Lanczos’ vectors (see the appendix of Hamer and Johnson (1986)). By using 
‘gather’ and ‘scatter’ routines a vectorised algorithm has been found for this sparse 
matrix multiplication which manipulates long vectors, and thus exploits the full speed 
of the Cyber 205. 

An attempt was made to lessen the impact of the truncation of the set of strong- 
coupling basis states in a ‘healing algorithm’. This allows for, in an approximate 
manner, those strong-coupling states which lie outside the basis state sample but which 
are connected via V to states inside the sample. 

To do this we use the fact that amplitudes ((illsll) between eigenstates Ili)) and 
strong-coupling basis states 11) fall off roughly as -e-aEa(’). This gives us approximately 
the value of amplitude ( ( i l l f i / l ) o u t s l d e  where I I ) O U t S l d e  is a strong coupling state outside 
the sample. This can then be used to make corrections to the fully truncated Wamil- 
tonian. However we did not proceed with this method as there is only a slight 
improvement in the eigenvalues’ accuracy, which is not commensurate with the pro- 
gramming complications required. 

Appendix 2. Weak-coupling results 

Here we derive the first terms in the weak-coupling expansions for r ] ( x )  and &‘(x). We 
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begin the derivation with the Hamiltonian 
M 

ri = ( J ’ ( m )  - x cos{ e ( m )  - O(m + I)}) 
m = l  

(A2.1) 

(see Hamer et a1 1979). In the weak-coupling limit (x + CO) the cosine term becomes 
dominant. Converting to momentum-space variables: 

with 

(A2.2) 

and with a change of variables one finds that the Hamiltonian can be written in a 
diagonal form corresponding to a sum of harmonic oscillators each with energy 

E P = ( n p + t ) u p  ( A 2 . 4 ~  ) 

up =2[x(1 -cosp)]1’2. (A2.4b) 

Hence as M + 00 the dispersion relation for fundamental excitations becomes 

(A2.5) 

The mass gap has been argued by Hamer and Barber (1981) to be 

1 
(A2.6) 

FM LaM’ 
Comparing (A2.5) and (A2.6) with the formulae predicted by conformal invariance 

E ( p )  - 5P (A2.7) 

gives 

5 = v 5  
and 

1 
T=z% 

(A2.8) 

(A2.9) 

(A2.10) 

in the weak-coupling limit?. The values of l ( x )  determined numerically in 0 3.3 are 
compared with the weak-coupling behaviour (A2.9) in table 1 .  Figure 3 includes a 
plot of the behaviour of ~ ( x )  in the weak-coupling limit (from A2.10)). 

t This result exactly matches the Euclidean formula 7 = T / 2 x  predicted by Luck ( 1 9 8 2 ) ,  given the correspon- 
dences x = 2 / g 2  and g = T (Hamer et a/ 1979). 
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